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Abstract

This paper presents a combined experimental and numerical study on natural convection in open-celled metal foams.

The effective thermal conductivities of steel alloy (FeCrAlY) samples with different relative densities and cell sizes are

measured with the guarded-hot-plate method. To examine the natural convection effect, the measurements are con-

ducted under both vacuum and ambient conditions for a range of temperatures. The experimental results show that

natural convection is very significant, accounting for up to 50% of the effective foam conductivity obtained at ambient

pressure. This has been attributed to the high porosity (e > 0.9) and inter-connected open cells of the metal foams
studied.

Morphological parameters characterizing open-celled FeCrAlY foams are subsequently identified and their cross-

relationships are built. The non-equilibrium two-equation energy transfer model is employed, and selected calculations

show that the non-equilibrium effect between the solid foam skeleton and air is significant. The study indicates that the

combined parameter, i.e., the porous medium Rayleigh number, is no longer appropriate to correlate natural convec-

tion by itself when the Darcy number is sufficiently large as in the case of natural convection in open-celled metal foams.

Good agreement between model predictions and experimental measurements is obtained.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural convection in porous media has been exten-

sively investigated due to the wide range of applications

in geothermal systems, electronics cooling, crude oil
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production, storage of nuclear waste materials, fiber

and granular insulations, solidification of castings,

amongst many others. Most of previous studies [1–14]

have focused on natural convection in packed beds

and granular porous media with porosities in the range

0.3–0.5. The porosity of a typical metal foam with open

cells is usually much higher (e > 0.9), and the ligaments
form a network of inter-connected dodecahedral-like

cells, as shown in Fig. 1a. Consequently, most of previ-

ous studies are not applicable to highly porous, open-

celled metal foams, and it is expected that the effect
ed.
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Nomenclature

~a surface area density, 1/m

Cf specific heat of fluid, J/kg K

CI inertial constant

dp cell size, m

df cell ligament diameter, m

Da Darcy number = K/H2

g gravitational acceleration, m/s2

H specimen height, m

k thermal conductivity, W/mK

km saturated medium thermal conductivity,

W/mK

kd dispersion conductivity, W/mK

K permeability, W/mK

Nu Nusselt number

P pressure, Pa

Pr Prandtl number = mf/af
Ra Rayleigh number = gbDTH3/(mf/af)
Ram medium Rayleigh number = RaDakf/km
T temperature, K

u x-component velocity, m/s

v r-component velocity, m/s

U dimensionless x-component velocity

V dimensionless x-component velocity

Greek symbols

a thermal diffusivity, m2/s

b coefficient of thermal expansion, K�1

e porosity

h dimensionless temperature = (T � Tc)/

(Th � Tc)

l dynamic viscosity, Ns/m2

m kinematic viscosity, m2/s

q fluid density, kg/m3

Subscripts

c cold

d dispersion

h hot

e effective

f fluid

m medium

s solid

Fig. 1. A typical Porvair FeCrAlY foam: (a) cellular morphology; (b) cross-section of an individual strut.
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of natural convection in these foams could be much

stronger than that in packed beds and granular porous

media.

To the authors� best knowledge, in the open litera-
tures, Hong et al. [15] analytically studied the natural

convection boundary layer from a heated vertical plate

embedded in a metal foam by using the single perturba-

tion method. It was concluded that although non-Darcy

effects, i.e., boundary and inertial effects, are very signif-

icant in metal foams, they are not important in low-

porosity media such as packed beds. However, in this

study [15] the microstructure of a metal foam was not
really introduced, rather it was explored by simply

changing relevant parameters such as Rayleigh number

and Prandtl number. Recently Phanikumar and Maha-

jan [16] studied the natural convection in an enclosure

in which a metal foam occupies one corner of the enclo-

sure. In this paper, the flow and temperature fields in the

enclosure are examined, but the details of flow pattern

and temperature distribution in metal foams are not re-

vealed. Consequently, natural convection in metal foams

needs to be further studied by modeling the parameters

in terms of mircostructural parameters. In addition, al-

most all previous studies for packed beds employed
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Fig. 2. General arrangement of the test facility.
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the one-equation energy model based upon the assump-

tion that local thermal equilibrium between fluid and

solid phases is achieved. However, there exists no con-

crete evidence to justify this assumption. For metal

foams where the solid conductivity is much lager than

that of air, it is expected the temperature distributions

are significantly different for the solid and fluid. There-

fore the non-equilibrium effect needs to be examined

based on the two-equation model. Furthermore, in pre-

vious studies, the entry region is usually quite short so

that the convective term in the governing equations

can be neglected. This may not be the case for natural

convection in high-porosity metal foams.

In all previous studies on natural convection, the per-

meability K is derived from forced convection experi-

ments. The permeability and inertial constant CI of a

metal foam have been investigated by several researchers

[17–20], although only Calmidi and Mahajan [19], gave

specific formulations of K and CI based on experimental

measurements at high velocity range, e.g., 0.5–7 m/s.

However, the velocity of natural convection in metal

foams is several orders of magnitude smaller. Some stud-

ies [21–23] have shown that K and CI are both velocity

dependent, because linear and quadratic effects on pres-

sure loss are always present. Depending on the velocity

range one effect will be stronger (or weaker) than the

other, and this will be reflected in the value of the coef-

ficients for the linear and quadratic terms. Therefore, it

is important that K and CI are associated with the veloc-

ity range from which they are determined. In other

words, these values of K and CI cannot be used with

confidence for predicting hydraulic behaviour at veloci-

ties outside this range.

Hitherto no experimental data is available for open-

celled metal foams to give a clear indication on how

important natural convection is, what percentage it

can contribute to overall effective thermal conductivity,

and how its effect changes with increasing temperature

(in which case the viscosity increases and thermal radia-

tion effect becomes significant). All these questions

need to be experimentally and analytically/numerically

addressed.

The objective of this paper is multifold. The effect of

natural convection on the effective thermal conductivity

of open-celled metal foams will be experimentally deter-

mined. The mathematical formulations based on the

non-equilibrium two energy equation model will be nor-

malized, and the independent parameters charactering

natural convection will be identified. The Rayleigh num-

ber and Darcy number effects will be examined and non-

equilibrium effect will be revealed. The predictions will

be compared with experimental measurements at room

temperature. Natural convection in metal foams at high

temperatures is beyond the scope of the present paper,

and will be addressed in combination with thermal radi-

ation effect in a separate study.
2. Experimental program

2.1. Apparatus

The guarded-hot-plate apparatus in the one-sided

mode, based on ASTM C1044-90 and C177, is used

for thermal conductivity measurements. The principle

is to ensure a unidirectional heat flux between the top

and bottom surfaces of the specimen. Detailed descrip-

tions of the apparatus have been given by Zhao et al.

[24], and hence, for brevity, only the general arrange-

ment of the measurement is given below.

A successful guarded-hot-plate apparatus enabling

measurement at varying temperatures and air pressures

requires a complex system. The experimental apparatus

consists of a test section and various supporting systems,

as shown in Fig. 2. The test section contains main hea-

ter, auxiliary heaters, specimen, cooling plate, thermal

insulations, and thermocouples. It is located in a vac-

uum chamber, being part of the vacuum system, and en-

ables experiments to be carried out at various air

pressures. The electric power to the heaters is supplied

by a heater control system. The cold plate temperature

can be varied by adjusting the amount of air flow

through the system. Thermocouple signals and the

power input to the main heater are recorded and ana-

lysed by a data logging system.
2.2. Experimental uncertainty analysis

The uncertainty of the measured results is caused by

random as well as systematic errors in the measure-

ments, mainly consisting of:

• Uncertainty in heat flow, dQ.
• Uncertainty in temperature difference, dDT =

d(Th � Tc).

• Uncertainty in metered area, dA.
• Uncertainty in specimen thickness, dH.



1 2 3 4 5
Sample number

0

0.3

0.6

0.9

1.2

1.5

Th
er

m
al

 C
on

du
ct

iv
ity

 (W
/m

K
) Vacuum condition

Ambient pressure

Fig. 3. Experimental results at both vacuum condition and

ambient pressure.

0=∂
∂ r

T
0=

∂
∂

r

T

x

r

H

r0

Th

Tc

Fig. 4. Physical model and cylindrical coordinate system.

C.Y. Zhao et al. / International Journal of Heat and Mass Transfer 48 (2005) 2452–2463 2455
The total uncertainty of the measurement can be

obtained as:

dke
ke

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dQ
Q

� �2
þ dDT

DT

� �2
þ dA

A

� �2
þ dH

H

� �2s
ð1Þ

The above four uncertainties have been individually

analysed by Zhao et al. [24]. Generally, the uncertainty

of the present measurement lies within the range be-

tween 5% and 8%.

2.3. Experimental results

A total of five FeCrAlY (Fe 73%, Cr 20%, Al 5%, Y

2%) foam disks of roughly 25 mm thickness and 100 mm

diameter, with a range of pore sizes and relative densi-

ties, were produced via the sintering route and supplied

by Porvair Fuel Cell Technology. Their relative densities

and cell sizes expressed in terms of ppi (pores per inch)

are given in Table 1. In the measurements, the hot plate

temperature is maintained at about 40 �C, whilst the
temperature difference between hot and cold plates is

kept at approximately DT = 20 �C. The effective thermal
conductivity of the foam is calculated according to

ke = qH/DT, where q is the input heat flux and H is

the specimen height. More details of the measurement

procedures can be found in the paper [24].

Fig. 3 presents the measured results for all five sam-

ples under both vacuum condition and atmospherific

pressure. It can be seen that the value of ke at atmosphe-

rific pressure is roughly twice that in vacuum. This

clearly indicates that the effect of natural convection is

very significant, contributing about 50% of the overall

thermal conductivity measured at atmospherific pres-

sure. The main reason is that the porosity of metal

foams is very high, usually over 90%, and the cells are

open and inter-connected. Natural convection therefore

takes place in the global domain, rather than occurring

inside a single cell.
3. Theoretical simulation

3.1. Mathematical formulations

For the two-dimensional axisymmetric, steady state,

natural convection studied in the present paper, the

physical model is depicted in Fig. 4. The bottom and

top surfaces of the specimen are maintained at uniform
Table 1

Specifications of FeCrAlY samples tested

Sample 1 Sample 2

PPI (pores per inch) 30 30

Relative density 5% 10%
temperatures, Th and Tc, respectively, with Th > Tc. The

side walls are thermally insulated. The problem under

investigation is natural convection of incompressible

fluid flow through open-celled metal foams, belonging

to the general class of porous Rayleigh-Benard problem.

When the temperature difference Th � Tc, character-

ized by the dimensionless parameter Rayleigh number

Ra, is not too high, heat is transported mainly by con-

duction. However, when the Rayleigh number exceeds

a certain critical value Rac, the colder and denser fluid

at the top tends to topple over. The fluid becomes unsta-

ble and two-dimensional cellular patterns appear. It is

believed that increasing the Rayleigh number further re-

sults in three-dimensional cellular patterns and eventu-

ally chaotic motion, which is difficult to model

physically. As previously discussed, the complexity of

the morphological structure of a porous medium usually

precludes a detailed microscopic investigation of trans-

port phenomena at the pore level. Therefore, the general
Sample 3 Sample 4 Sample 5

60 60 90

5% 10% 5%
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transport equations are commonly integrated over a rep-

resentative elementary volume, accommodating both the

fluid and solid phases within a porous structure.

There are two approaches available in applying the

volume-averaging technique for heat transfer investiga-

tions: one is averaging over a representative elementary

volume containing both the fluid and the solid phases,

and the other is averaging separately over each of the

phases, thus resulting in a separate energy equation for

each individual phase. These two models are referred

to as the one-equation model and two-equation model,

respectively. The one-equation model is valid when local

temperature difference between fluid and solid phases is

negligibly small. Because this temperature difference

cannot in general be neglected in metal foams saturated

with air [19,25,26], the two-equation model will be used

below.

Throughout this study, the thermophysical properties

of air are assumed constant, except for its density con-

tained in the momentum equation. To an excellent

approximation, the metal foam can be considered homo-

geneous and isotropic. In order to re-examine the

momentum equation through a highly porous medium,

the boundary and inertial effects are included with vol-

ume-averaging principles. Under these conditions, the

governing equations are given by:

Continuity equation

r � hVi ¼ 0 ð2Þ

Momentum equation

qf
e2
hðV � rÞVi ¼ �rhP if þ

lf
e
r2hVi � lf

K
hVi

� qf
CIffiffiffiffi
K

p hVi � hVi½ �J þ qfgi ð3Þ

The fourth term in Eq. (3) was first introduced by

Forchheimer to account for the inertial effects (non-

Darcy flow). Similarly, the second term in (3) accounts

for the boundary effects on velocity distribution, and

was first introduced by Brinkman. The last term in (3)

is the buoyancy term, i.e., the gravity vector, which is

the driving force behind natural convection.

Solid phase energy equation

0 ¼ r � fkse � rhT sig � hsf~aðhT si � hT fiÞ ð4Þ

Fluid phase energy equation

hqifCfhVi � rhT fi ¼ r � fðkfe þ kdÞ � rhT fig
þ hsf~aðhT si � hT fiÞ ð5Þ

where h i means a volume-averaging; kse, T, hsf, ~a, qf, lf,
Cf and kfe are effective solid thermal conductivity, tem-

perature, interfacial heat transfer coefficient, wetted

area per volume, density, viscosity, heat capacity and

effective fluid thermal conductivity, respectively; kd is

thermal dispersion conductivity (its physical signifi-

cance and formulation will be given later), e is porosity,
V is velocity vector, and J = Vp/jVpj is unit vector
aligned along pore velocity vector, Vp; K is permeability

of the porous medium with unit m2, and it will be re-

examined for buoyancy-driven natural convection later.

CI is the inertial coefficient, depending on the porous

microstructure.

For low-porosity media such as packed beds, the con-

vective term qf
e2 hðV � rÞVi in (3) is usually very small and

can be neglected. For high-porosity media such as metal

foams, convective effects may nevertheless be important

and hence this term will be reserved in the present study.

Although Hong et al. [15] concluded that the effect of

inertial term in Eq. (3) is significant by simply changing

the inertial coefficient, no experimental validation was gi-

ven in their study. In the present study, the inertial

term—the fourth term will not be considered owing to

the small velocity and the lack of reliable correlation

for CI. Due to small variations in fluid density, the Bous-

sinesq approximation will be invoked to allow for density

variations in the buoyancy term of Eq. (3), while fluid

density remains constant for all other terms. By splitting

the velocity vector into two components, u in the x-direc-

tion and v in the r-direction, Eqs. (3)–(5) can be re-ar-

ranged and simplified as follows:

Momentum equations

oðqfu2Þ
ox

þ 1
r
oðrqfuvÞ

or

¼ �e2
op
ox

þ o

ox
lfe

ou
ox

� �
þ 1

r
o

or
rlfe

ou
or

� �

� lfe
2

K
uþ qfgbðT f � T cÞe2 ð6Þ

oðqfuvÞ
ox

þ 1
r
oðrqfv2Þ

or

¼ �e2
op
or

þ o

ox
lfe

ov
ox

� �
þ 1

r
o

or
rlfe

ov
or

� �
� lfe

2

K
v

ð7Þ

where b is the thermal expansion coefficient of the fluid,
and g is gravitational acceleration.

Energy equations

0 ¼ o

ox
kse

oT s
ox

� �
þ 1

r
o

or
rkse

oT s
or

� �
� hsf~aðT s � T fÞ ð8Þ

oðqfuT fÞ
ox

þ 1
r
oðrvT fÞ

or

¼ o

ox
kfe þ kd

Cf

oT f
ox

� �
þ 1

r
o

or
r
kfe þ kd

Cf

oT f
or

� �

þ ~ahs
Cf

ðT s � T fÞ ð9Þ

The governing equations (6)–(9) are subject to the

following boundary conditions:
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u ¼ v ¼ 0 and T s ¼ T f ¼ T h at x ¼ 0
u ¼ v ¼ 0 and T s ¼ T f ¼ T c at x ¼ H

v ¼ 0 ou
or

¼ 0 and
oT s
or

¼ oT f
or

¼ 0 at r ¼ 0

u ¼ v ¼ 0 and
oT s
or

¼ oT f
or

¼ 0 at r ¼ r0

ð10Þ

where H and r0 are the height and radius of the cylindri-

cal specimen, respectively.
3.2. Normalization of governing equations

In order to identify the important parameters charac-

terizing natural convection in metal foams and to have a

clear understanding of the physical problem, normaliza-

tion of the above governing equations is necessary.

Upon introducing the following non-dimensional

quantities:

X ¼ x
H
; R ¼ r

H
; U ¼ uH

af
; V ¼ vH

af
; h ¼ T � T c

T h � T c
ð11Þ

where af = kf/(qfCf) is the air thermal diffusivity, the gov-
erning equations (6)–(9) can be non-dimensionalized, as:

Momentum equations

oU 2

oX
þ 1

R
oðRUV Þ

oR

¼ � oP
oX

þ o

oX
Pre

oU
oX

� �
þ 1

R
o

oR
RPre

oU
oR

� �

� e2Pr

Da
U þ RaPrhfe

2 ð12Þ

oðUV Þ
oX

þ 1
R
oðRV 2Þ
oR

¼ � oP
oR

þ o

oX
Pre

oV
oX

� �
þ 1

R
o

oR
RPre

oV
oR

� �
� e2P r

Da
V

ð13Þ

o

oX
ohs
oX

� �
þ 1

R
o

oR
R
ohs
oR

� �
� Bioeðhs � hfÞ ¼ 0 ð14Þ

oðUhfÞ
oX

þ 1
R
ðRV hfÞ
oR

¼ o

oX
afe þ ad

af

ohf
oX

� �
þ 1

R
o

oR
R

afe þ ad
af

ohf
oR

� �
þ Nui

¼ 0 ð15Þ

It is noted that a total of five parameters appear in

the governing equations, namely, Darcy number (Da),

Rayleigh number (Ra), interfacial Biot number (Bioe),

interfacial Nusselt number (Nui), and equivalent fluid

diffusivity ratio:
Da ¼ K

H 2
; Ra ¼ gbDTH 3

afmf
; Bioe ¼

~aH 2hi
kse

;

Nui ¼
~aH 2hi
kf

;
afe þ ad

af
¼ kfe þ kd

kf
ð16Þ
3.3. Modelling on Porvair metal foams

3.3.1. Independent parameters

The relative density qr, pore size dp, ligament diame-

ter df, and inner-to-outer ligament diameter ratio r have

already been experimentally measured [25,26]. These

parameters are not all independent of each other, and

the cross-relationship can be written as [19]:

d f
dp

¼ 1:18
ffiffiffiffiffiffiffiffiffiffiffi
1� e
3p

r
1

1� e�ðð1�eÞ=0:04Þ

� �
ð17Þ

It should be pointed out that Eq. (17) has been shown

to adequately describe the cellular morphology of ERG

foams for which the simple relation between porosity

and relative density holds, qr = 1 � e. Thus, for ERG
foams, there are only two independent foam parameters,

i.e., pore size dp (or fibre diameter df), and porosity e (or
relative density qr).
For Porvair metal foams, because cell edge ligaments

are hollow (Fig. 1b), another parameter, the inner-to-

outer ligament diameter ratio r, is needed. The relation-

ship between porosity and relative density then becomes:

qr ¼ ð1� eÞð1� r2Þ ð18Þ

Consequently, the following cross-relationships exist

between a ERG foam and a Porvair foam:

qr;Porvair ¼ qr;ERGð1� r2Þ at same porosity e ð19Þ

eporvair ¼
eERG � r2

1� r2
at same relative density qr ð20Þ

From Eqs. (17)–(20), it can be seen that there are

three independent parameters characterizing a Porvair

foam, namely, porosity e (or relative density qr), pore
size dp (or ligament diameter df), and inner-to-outer lig-

ament diameter ratio r. From Eq. (18), it is noted that

the relative density and inner-to-outer ligament diameter

ratio can be integrated into one parameter, i.e., the

porosity. Consequently, similar to the case of a ERG

foam, there are only two independent parameters for a

Porvair foam, i.e., porosity and pore size (or ligament

diameter). The comparison between predictions and

measured morphology data for Porvair foams was given

by Zhao et al. [26].

3.3.2. Permeability K

The concept of permeability K was first introduced

by Darcy to build the relationship between pressure gra-

dient and area-averaged fluid velocity through a column

of porous material [27]. With reference to one-dimen-

sional forced flow by pressure gradient, the Darcy law is:
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u ¼ K
l

� dp
dx

� �
ð21Þ

from which the permeability can be expressed as

K ¼ lu
�dp=dx ¼ ðlengthÞ2 ð22Þ

The concept of permeability K has been widely used

to describe laminar flow driven by pressure gradient in

a porous medium, with the square root of K representing

a length scale of the velocity field. The length scale of

buoyancy-driven natural convection should be quite dif-

ferent, because the flow pattern and velocity range are

quite different in the two physically different problems.

This situation is similar to the case of buoyancy turbu-

lence, wherein the buoyancy turbulence length scale is

different from that associated with the turbulence driven

by shear force. In other words, K obtained from forced

convection measurement is not adequate for natural

convection due to different velocity range and flow

pattern.

The above discussions suggest that permeability K is

a much complicated parameter. The theoretical determi-

nation of K for the velocity range of natural convection

in metal foams is not applicable due to the lack of exper-

imental data. Rather, the Da (=K/H2) effect will first be

examined, from which it will be shown, fortunately, that

heat transfer will gradually reach a plateau after Da ex-

ceeds a certain value for a fixed specimen height and

Rayleigh number, Ra. In view of the high porosity

(>90%) and inter-connected open cells of metal foams,

it is assumed that the Da number lies in the plateau re-

gion for the five FeCrAlY samples tested. This implies

that the foam structure imposes little restriction on nat-

ural convection flow at the global scale, with its velocity

determined mainly by Ra, consistent with the global nat-

ure of natural convection in metal foams.

3.3.3. Effective thermal conductivity

The effective solid and fluid conductivities, kse and

kfe, appearing in Eqs. (8) and (9) need to be determined

in order to close the equations. A three-dimensional ana-

lytical model for the effective conductivity of open-celled

metal foams having solid struts (e.g., ERG foams) has

recently been put forward by Boomsma and Poulikakos

[28]. With thermal radiation and air conduction ne-

glected, this model yields:

kse
ks

¼ 1ffiffiffi
2

p 4k
2e2 þ pkð1� eÞ þ

3e� 2k
e2

þ
ffiffiffi
2

p
� 2e

� �2
2pk2 1� 2e

ffiffiffi
2

p� �
( )�1

ð23Þ

where e = 0.339,

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
2� ð5=8Þe3

ffiffiffi
2

p
� 2e

� �
p 3� 4e

ffiffiffi
2

p
� e

� �
vuut ð24Þ
and e is the porosity of the foam having solid cell liga-

ments. Porvair foams have similar cellular morphologies

as ERG foams except that their cell ligaments are typi-

cally hollow, and hence the porosity and effective solid

conductivity need to be changed accordingly [26]. If

the Porvair foam has the same relative density as the

ERG material, then its porosity can be calculated

according to:

eporvair ¼
e � r2

1� r2
ð25Þ

where r is the inner-to-outer radius ratio of the hollow

struts in Porvair foams [26]; see also Fig. 1b. Similarly,

the effective solid conductivity of a Porvair foam is cal-

culated as

kse;porvair ¼ kseð1� rÞ2 ð26Þ

where kse is the value obtained from Eq. (23).

3.3.4. Thermal dispersion conductivity kd

Thermal dispersion in a fluid-saturated porous med-

ium represents the enhancement of heat transfer due to

hydrodynamic mixing of interstitial fluid at the pore

scale. Fluid particles, flowing along separate paths inside

a metal foam will be pushed apart when they meet cell

ligaments, and thus dispersed by these solid obstruc-

tions, leading to enhanced mixing. This is the physical

rational behind the so-called thermal dispersion conduc-

tivity kd. Therefore the macroscopic concept of thermal

dispersion stems from local temperature and velocity

deviations. Although the net effect is macroscopically

manifested as diffusion, the diffusing process can be eval-

uated only if flow and temperature fields at the pore

scale are known. This is essentially impossible due to

the complex cellular morphology of the metal foam, so

usually kd is determined indirectly by matching with

macroscopic transport measurements. Thermal disper-

sion in porous media has been studied by several

researchers [7,9,11,17,29], and several empirical models

have been proposed based on macroscopic transport

measurements. In all these empirical models, the thermal

diffusivity is expressed as the product of particle (pore)

size, local velocity and dispersion coefficient. Here, the

thermal dispersion model developed by Georgiadis and

Catton [29] based on stochastic phenomena is adopted,

as:

kd ¼
Cd
1� e

qfCfdjV j ð27Þ

where Cd = 0.36 was shown to give the best fit with

experimental data [29].
3.3.5. Surface area density ~a and interstitial heat

transfer coefficient hsf
Before carrying out numerical calculations, the

surface area density, ~a, and interstitial heat transfer
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coefficient, hsf, also need to be determined for the metal

foams. The solid–fluid interfacial surface area density

based on arrays of parallel cylinders intersecting in three

mutually perpendicular directions is [26]:

~a ¼ 3pd f
d2p

ð28Þ

As for the interstitial heat transfer coefficient, hsf, no

correlation exists for metal foams. Here, based on the

work of Churchill and Chu [30] for natural convection

in a bank of staggered cylinders, the following correla-

tion is employed:

hsf ¼
kf
d f

0:36þ 0:518Ra1=4d

1þ ð0:559=Pr Þ9=16
h i4=9

0
B@

1
CA ð29Þ

where Rad ¼ gbDTd3f =ðafmfÞ.

3.4. Numerical procedure

The combined continuity, momentum, and energy

equations are solved numerically with the SIMPLE

algorithm [31]. The control-volume formulation utilized

in this algorithm ensures the continuity of convective

and diffusive fluxes as well as overall momentum and en-

ergy conservation. The harmonic mean formulation

adopted for the interface diffusion coefficients between

two control volumes can handle abrupt changes in these

coefficients. Selected calculations show that the mesh

size required for sufficient numerical accuracy depend

mainly on the Rayleigh and Darcy numbers. For all

cases studied, it is found that a uniform grid of

65 · 55, in axial and radial directions respectively, can
ensure the mesh-independence of the solution. The gov-

erning equations were solved by using the ADI numeri-

cal scheme. The iteration is terminated when changes in

target variables (u, v, Ts and Tf) are less than 10
�5 be-

tween successive iterations.
4. Results and discussion

4.1. Effect of Darcy number, Da

Fig. 5 shows the variation of effective thermal con-

ductivity ke with the Darcy number Da for sample 3

(Table 1), at a fixed Rayleigh number, Ra = 48,000.

When Da is less than the critical value 4 · 10�3, ke re-
mains constant. This implies that no fluid motion (natu-

ral convection) occurs and heat is transferred by pure

conduction, a typical feature of the Rayleigh–Benard

problem. When the Darcy number exceeds the critical

value 4 · 10�3, the value of ke sharply increases (Fig.

5), as a result of natural convection. Here, another

parameter, the medium Rayleigh number, is introduced
as Ram = RaDa kf/km, which can be considered as the

combined effect of buoyancy force and permeability.

Here km is the saturated medium thermal conductivity,

its value can be predicted by Eqs. (23) and (24) as

km = kse if the conduction of air is neglected. The corre-

sponding critical medium Rayleigh number, Racm, is
about 20 for the onset of natural convection. For the

Benard-type natural convection problem between two

infinite horizontal plates, the onset of natural convection

occurs at Ram � 40 [27,29]. Since the case studied here is
natural convection confined inside a cylinder with r0/

H � 2–3, the boundary condition has a direct effect on
the onset of natural convection. As the Darcy number

Da exceeds the critical value, the effective conductivity

ke drastically increases from 0.25 W/mK, and then

approaches asymptotically 0.45 W/mK when Da > 0.1.

Given that Da = K/H2, increasing Da is equivalent to

increasing the permeability for a fixed height, H. There-

fore, the maximum of ke, 0.45 W/mK, should be identi-

cal to the value obtained from natural convection in the

single fluid medium with same equivalent thermal con-

ductivity as the metal foam studied.

4.2. Effect of Rayleigh number, Ra

In a number of studies [3,9,32], the numerical and

experimental results were correlated with the porous

Rayleigh number Ram as follows:

Num ¼ q
DT

H
km

¼ ke
km

¼ f ðRamÞ ¼ CRan
m ð30Þ

Note that Num is based on the medium thermal con-

ductivity, km. This correlation indicates that Nusselt

number is only dependent on Ram. However, from Eq.

(11), the parameters Ra and Da cannot be simply inte-

grated as one independent parameter Ram. Namely,

the effects of porous resistance and buoyancy force

(Ra) on heat transfer are somewhat different, and
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therefore the effect of Ra cannot be simply ascertained

by using a combined parameter Ram. Fig. 6 presents

Num as a function of Ram for two different Rayleigh

numbers. It is seen that Num is (approximately) indepen-

dent of Ra only when Ram < 100. Beyond this range, for

a given Ram, the value of Num increases with increasing

Rayleigh number, implying that the enhancing effect due

to stronger buoyancy outstrips the suppressing effect of

diminishing permeability. A similar conclusion on the

Ra effect was reached by Kaviany [4] who studied non-

Darcian effects on natural convection in porous media

confined between horizontal cylinders. For high poros-

ity, open-celled metal foams, the buoyancy permeability

and the corresponding Darcy number could be much

higher: it is therefore most likely that Ram lies beyond

the range where Num is only dependent on the combined

effect of Ram.

4.3. Velocity fields, temperature distributions and local

heat transfer

The effective thermal conductivities of FeCrAlY

foams have been measured for different relative densities

and cell sizes at various temperatures between room

temperature and 800 K [24]. Numerical calculations

based on the natural convection model developed here

have been conducted for the same samples (Table 1).

As thermal radiation is not considered in the present

mathematical formulations, only the effective thermal

conductivity measured at the lowest temperature for

each sample will be used to compare with numerical pre-

dictions. The Rayleigh number Ra in the measurements

is approximately 5 · 104 for all samples. From Fig. 5,

the Darcy number has almost no effect on overall heat

transfer when Da exceeds 0.1. In view of the high poros-

ity and inter-connected open cells of metal foams, it is

assumed here that the Da number based on the buoy-

ancy permeability lies beyond this range, i.e., Da > 0.1.

This implies that the foam structure imposes little
restriction on natural convection flow at the global scale.

Therefore, the Darcy term in Eqs. (12) and (13) is ne-

glected in all calculations. Results for sample 2 with

30 ppi and 10% relative density are presented below;

similar results are obtained for the rest of the samples.

4.3.1. Velocity field

Fig. 7 depicts the velocity field for sample 2 at

Ra = 5.0 · 104, where three major counter-rotating rolls
(circulation zones) are visible. To have a clearer picture

on the velocity field, the stream function w is introduced,
defined as ow/or = ru, ow/ox = �rv. The contour of the

stream function is plotted in Fig. 8. The three major

rotating rolls are clearly shown in this figure.

4.3.2. Solid and fluid temperature distributions

The contours of temperature distributions in the

solid and fluid phases are presented in Figs. 9a and b,
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respectively, for sample 2 at Ra = 5.0 · 104. The solid
temperature decreases linearly from the bottom surface

to top surface, wiggling slightly in the horizontal direc-

tion due to natural convection (Fig. 9a). The fluid tem-

perature exhibits much stronger wave distributions (Fig.

9b), owing to the strong counter-rotating rolls shown in

Figs. 7 and 8. The fluid temperature distribution is

totally different from that of the solid, indicating that

the commonly used one-equation energy model based

on local thermal equilibrium is not adequate for study-

ing natural convection in metal foams.

To make a clearer examination and comparison, Fig.

10 depicts metal and air temperature distributions at

three selected horizontal levels, X = 0.1, 0.5, and 0.9

(sample 2, Ra = 5.0 · 104). It can be seen that the metal
and air temperature lines both resemble sine waves, but

the amplitude of air temperature lines is much larger

than that of the metal. At the horizontal level of

X = 0.1 close to the hot surface (bottom surface), metal

temperature is higher than air, suggesting that heat is

being transferred from former to latter. On the contrary,

air temperature is higher than that of metal at the hori-

zontal level of X = 0.9 close to the cold plate, resulting

heat transfer from air to metal. At the middle level,
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X = 0.5, both situations occur due to the strong three

rotating rolls.
4.3.3. Heat transfer

The local Nusselt number Nu at the bottom and top

surfaces of sample 2 is shown in Fig. 11 for Ra =

5.0 · 104. Here, the local Nusselt number is defined as:

Nuf ¼
q

DT
H
kf

ð31Þ
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where

q ¼ kfe
oT f
oy

����
y¼0

þ kse
oT s
oy

����
y¼0

ð32Þ

Fig. 11 shows that the local Nu distributions are quite

different for the top and bottom surfaces, even though

their averaged values are identical. Again, this is attrib-

uted to the effect of strong rotating rolls of air.

4.4. Comparison with experimental measurements

The comparison of numerical predictions and exper-

imental measurements on room temperature effective

thermal conductivity is presented in Fig. 12 for all five

FeCrAlY foam samples. Generally, the predictions

agree well with experimental data, with a maximum

deviation of 28% for sample 2. It is noted that the devi-

ation for two samples with 10% relative density is larger

than that of other samples with 5% relative density. For
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room temperature.
the larger relative density (10%) sample, the natural con-

vection will be enhanced by more high-temperature solid

structure presence. The stronger natural convection may

result in three-dimensional cellular patterns or eventu-

ally chaotic motion, which makes the two-dimension

assumption inadequate.
5. Conclusions

Natural convection and its effect on overall heat

transfer in highly porous, open-celled cellular FeCrAlY

foams have been experimentally and numerically investi-

gated. The following major conclusions can be drawn:

(a) Natural convection is very significant in metal

foams due to the high porosity and inter-con-

nected open cells, contributing more than 50%

of the effective conductivity at ambient pressure.

(b) The combined parameter, porous medium Ray-

leigh number Ram, cannot characterize natural

convection alone when the Darcy number is rela-

tively large, as in the case of high-porosity metal

foams.

(c) Numerical calculations show that the non-equilib-

rium effect, i.e., the temperature difference be-

tween solid and fluid phases, cannot be

neglected, and hence the commonly used one-

equation model is no longer suitable for natural

convection in metal foams: the non-equilibrium

two-equation energy model should be used.

(d) The predicted effective thermal conductivities of

FeCrAlY foams compare favourably with those

measured at room temperature with the guarded-

hot-plate method.
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